Mathematical expectation & decision making

2 minute read

Published:

This post covers Introduction to probability from Statistics for Engineers and Scientists by William Navidi.

Basic Ideas

  • Expectation

    • The mean of $X$ is sometimes called the expectation, or expected value, of $X$ and

      may also be denoted by $E(X)$ or by $\mu$.

    • A conditional expectation is an expectation, or mean, calculated using a conditional probability mass function or conditional probability density function. The conditional expectation of $Y$ given $X = x$ is denoted $E(Y \mid X = x)$ or $\mu_{Y \mid X=x}$

    • Proof that \(\sigma^2_{aX+b} = a^2\sigma^2_{X}\) We will use the notation $E(X)$ interchangeably with $\mu_{X}$, $E(Y)$ interchangeably with $\mu_{Y}$ , and so forth. Let $Y = aX + b$. Then

    \[\begin{align*} \sigma^2_{aX+b} &= \sigma^2_{Y}\\ &= E(Y^2)− \mu^2_{Y}\\ &= E[(aX + b)^2] − \mu^2_{aX+b}\\ &= E(a^2X^2 + 2abX + b^2) − (a\mu_{X} + b)^2\\ &= E(a^2X^2) + E(2abX) + E(b^2) − (a\mu_{X} + b)^2\\ &= a^2E(X^2) + 2abE(X) + b^2 − a^2 \mu^2_X− 2ab\mu_X − b^2\\ &= a^2[E(X^2) − \mu^2_X]\\ &= a^2\sigma^2_X\\ \end{align*}\]
    • Proof that $\sigma^2_{aX+bY} = a^2\sigma^2_X + b^2\sigma^2_Y + 2ab Cov(X,Y)$
    \[\begin{align*} \sigma^2_{aX+bY} &= E[(aX + bY)^2] − \mu^2_{aX+bY}\\ &= E(a^2X^2 + 2abXY + b^2Y^2) − \mu^2_{aX+bY}\\ &= E(a^2X^2) + E(2abXY) + E(b^2Y^2) − (a\mu_X + b\mu_Y )^2\\ &= a^2E(X^2) + 2abE(XY) + b^2E(Y^2) − a^2\mu^2_X− 2ab\mu_X\mu_Y − b^2\mu^2_Y\\ &= a^2[E(X^2) − \mu^2_X] + b^2[E(Y^2) − \mu^2_Y] + 2ab[E(XY) − \mu_X\mu_Y ]\\ &= a^2\sigma^2_X+ b^2\sigma^2_Y + 2ab Cov(X,Y)\\ \end{align*}\]
    • Proof that $E[(X − \mu X)(Y − \mu Y )] = \mu_{XY} − \mu_X\mu_Y$

      \(\begin{align*} E[(X − \mu_X)(Y − \mu_Y )] &= E(XY − X\mu_Y − Y\mu_X + \mu_X\mu_Y )\\ &= E(XY) − E(X\mu_Y ) − E(Y\mu_X) + E(\mu_X\mu_Y )\\ &= E(XY) − \mu_YE(X) − \mu_XE(Y) + \mu_X\mu_Y\\ &= \mu_{XY} − \mu_Y\mu_X − \mu_X\mu_Y + \mu_X\mu_Y\\ &= \mu_{XY} − \mu_X\mu_Y\\ \end{align*}\) ​

    • Proof that if $X$ and $Y$ are independent then $X$ and $Y$ are uncorrelated

      • Let X and Y be independent random variables. We will show that $\mu_{XY} = \mu_X \mu_Y$, from which it will follow that $Cov(X,Y) = \rho_{X,Y} = 0$.

        We will assume that $X$ and $Y$ are jointly discrete, the joint probability mass function is equal to the product of the marginals: $p(x,y) = p_X(x)p_Y (y)$

\[\begin{align*} \mu_{XY} &= \Sigma xyp (x,y)\\ &= \Sigma xy p_X(x)p_Y (y)\\ &= \Sigma xp_X(x) \Sigma yp_Y (y) \\ &= \mu_X\mu_Y\\ \end{align*}\]