ASSIGNMENT 2 TG-2307

DYG AMAL NABILLAH BINTI AWG HJ ABD AZIZ (18B4030)

Question

We have simple random sample Sample1: X_1, \ldots, X_n of number of active cases of COVID-19 infections, and random sample Y_1, \ldots, Y_n of vaccinations completed on the same day during the October 2021 and Sample2: X_1, \ldots, X_n of number of active cases of COVID-19 infections, and random sample Y_1, \ldots, Y_n of vaccinations completed on the same day during the November 2021. Denote the population mean of active cases in one sample by μ_X , and the population mean of active cases in 2nd sample by μ_Y . Denote the corresponding standard deviations by σ_x and σ_y . These population means and standard deviations are unknown. The sample sizes are n.

STEP 1: DENOTING THE MEANS AND STANDARD DEVIATIONS OF THE TWO SAMPLES

Find mean using formula:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Find standard deviation using formula:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{X})^2}$$

$$\mu_X = 745.714$$
 $\sigma_X = 284.005$ $n_X = 14$
 $\mu_Y = 2280.071$ $\sigma_Y = 84.253$ $n_Y = 14$

 $H_0: \mu_X - \mu_Y \ge 0 \qquad \qquad H_1: \mu_X - \mu_Y \le 0$

November 2021 October 2021								
		October 2021						
Samp	ole 1	Sample 2						
Active Cases	Vaccinations	Active Cases	Vaccination					
1303	632,896	2185	482,863					
1203	633,464	2192	492,817					
1085	640,721	2233	501,834					
870	643,231	2321	504,342					
803	649,166	2335	512,357					
753	654,487	2342	519,567					
729	661,216	2192	492,817					
702	668,251	2225	539,811					
627	673,578	2226	547,214					
526	684,698	2311	552,265					
480	692,315	2284	563,695					
494	699,622	2263	564,543					
444	707,278	2501	572,565					
421	715,979	2311	552,265					

STEP 2: DETERMINE THE DEGREE OF FREEDOM

Assume both samples follow the normal distribution. Has an approximate Student's *t* distribution with *v* degree of freedom,

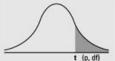
$$v = \frac{\left[\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right]^2}{\frac{\left(\frac{s_x^2}{n_x}\right)^2}{n_x - 1} + \frac{\left(\frac{s_y^2}{n_y}\right)^2}{n_y - 1}}$$

Using the means and standard deviations obtained in the previous step,

STEP 3: CALCULATE THE T-TEST STATISTICS

The H_0 was taken as $\mu_X - \mu_Y = 0$. The t-test statistics is then calculated,

$$t = \frac{(\bar{X} - \bar{Y}) - 0}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$$


$$= \frac{(745.714 - 2280.071) - 0}{\sqrt{\frac{284.005^2}{14} + \frac{84.253^2}{n_y}}}$$
$$= -19.38$$

STEP 4: DETERMINE ITS P VALUE

With 15 degree of freedom and t-value of -19.38, from the table on the figure, P value is not able to be identified.

From the highlighted area, t-value of -19.38 is too large and not determined on the table.

Numbers in each row of the table are values on a *t*-distribution with (*df*) degrees of freedom for selected right-tail (greater-than) probabilities (*p*).

	t (p, df)									
df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005		
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192		
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991		
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240		
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103		
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688		
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588		
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079		
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413		
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809		
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869		
11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370		
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178		
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208		
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405		
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728		
16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150		
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651		
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216		
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834		
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495		
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193		
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921		
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676		
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454		
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251		
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066		
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896		
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739		
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594		
30	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460		
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905		
CI			80%	90%	95%	98%	99%	99.9%		

CONCLUSION

The null hypotheses can neither be rejected or accepted due to the high value of t-test statistic

The is possibly due the large difference between the two samples.

Hence, it cannot be concluded whether that vaccination rate improved the COVID-10 infection in the country or not.